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AXISYMMETRIC SUPERSONIC FLOW IN ROTATING IMPELLERS!

By ArtEwr W. GOLDSTEIN

SUMMARY

General equations are developed for isentropic, frictionless,
axisymmelric flow in rolating impellers with blade thickness
taken into account and with blade forces eliminated in favor of
the blade-surface function. It is shown that the total energy of
the gas relative to the rotating coordinate sysiem is dependent
on the stream function only, and that if the flow upsiream of
the impeller s vortex-free, a relocity potential exists which is a
funetion of only the radial and axial distances in the impeller.

The characteristic eguations for supersonic flow are devel-
oped and used to investigate flows in several configurations in
order fo ascertain the effect of variations of the boundary condi-
tions on the internal flow and the work input. Conditions
varied are prerotation of the gas, blade turning rate, gas velocity
at the blade tips, blade thickness, and sweep of the leading edge.

INTRODUCTION

No method of practical importance has been deseribed in
the literature for computing the flow in the three-dimen-
sional region between the blades of a supersonic compressor.
This deficiency in design technique has been partly met by
using two-dimensional theory to compute the variations of
the relative flow from blade to blade, by assuming no radial
flow components, and by neglecting spanwise variations.
This procedure is probably satisfactory for designs with &
ratio of blade-root radius to blade-tip radius close to umity
and for eylindrical hub and casing shapes. ¥hen this ratio
is small, the spanwise variations ere significant. A method
devised at the NACA Lewis laboratory during 1950 is de-
seribed herein for computing the magnitude of these varia-
tions, when blade-to-blade variations are mneglected, by
assuming & large number of blades in the impeller and deal-
ing with the circumferential average flow. This technique,
when combined with estimates of blade-to-blade variations,
is useful for designs with closely spaced blades.

The usefulness of this approach may possibly be extended
to supersonic flow in a manner analogous to the method
described in reference 1 for subsonic flow; the axisymmetric
solution is first found and then used as a base for computing
the blade-to-blade variations. The particular method used
in the blade-to-blade calculation of reference 1 is series
expansion, which is not applicable to supersonic flows be-
cause of the existence of solutions with discontinuous
derivatives.

In reference 2, the equations for internal flow with zero

blade thickness are translated into the characteristic equa-
tions for the derivatives of the stream function, and it is
shown there that the equations are hyperbolic if the relative
velocity is supersonic, provided the ratio of the tangential to
the axial veloeity is & given field function. (This condition
includes the special class of blades containing radii from the
axis of rotation.) If the tangential velocity is prescribed,
the meridional velocity component is the deeisive factor in
determining whether the equations are hyperbolic.

The present report treats the velocity components directly
after the manner of reference 3 for arbitrary preassigned
blade shapes. The design problem is solved by finding the
hub shape that will give a prescribed velocity distribution
along the casing (or any other selected stream surface). In
the course of the solution, the tangentially averaged flow is
completely determined in the interior of the impeller.

The purpose of this paper, in addition to describing the
method in a mathematical outline, is to examine the per-
formance of the technique in computed examples and to find
whether any peculiarities in the flow arise from the boundary
conditions imposed, and to develop & background of experi-
ence for the design of impellers of the type considered by
examination of the effect of systematic variations of impeller
design parameters on the internal flow. The parameters
varied are inlet prerotation, blade turning rate, gas velocity
distribution at the casing, blade thickness, and sweep of the
blade leading edge.

Approximately 160 hours of computing are required to
work out about 100 points for each of the impellers. This
time can be reduced by application of the punched-card
computing technique to part of the procedure.

DEVELOPMENT OF EQUATIONS FOR AXISYMMETRIC FLOW

Equations describing the fluid flow are developed in con-
venient form by use of the equations of motion and con-
tinuity, the conditions of axial symmetry, and isentropic
state changes. The uniformly distributed blade forees,
which are inconvenient in caleulations, are eliminsted from
the equations by substituting the blade surface function, so
that.the condition of integrability is automasatically satisfied.

EQUATION OF CONTINUITY
The continuity equation for steady flow is

V-(eW)=0

t Supersedes WACA TN 2388, “Avisymmetrio Supersonic Flow in Rotating Impellers” by Arthur W. Goldstein, 1951.
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(Symbols are defined in the appendix.) If axial symmetry
is assumed, the equivalent in cylindrical coordinates is

% (pvr)+3a; (pwr)=0

Tho presence of blades serves to modify these equations if
the space filled by the blades is taken into account. If the
imapeller contains N blades with thickness ¢ meesured in the
direction of rotation, the ratio of volume availeble for fluid
flow to the actual volume of any space element approaches
(in the limit as the number of blades increases-indefinitely

with Nt fixed)
A Nt

LA S-LS

r 2ar

The continuity equation is therefore obtained by reducing
the specific-mass-flow terms pv and pw by the ratio A/r to
account for the area reduction:

2 (p0A)+ (o0 A)=0 )

Because none of the scalar quantities is a function of 4,

equation (1) implies the ex:lstence of 8 stream funct.mn

;b(r,z) such that
¥i=pwA

Ve=—pvA @

=0
(subscripts indicate partial derivatives) or
VW=pAiX V=pAjXW

EQUATION OF MOTION

(2a)

Subgtitution of energy for pressure.—The equation of
motion for steady, nonviscous, lsentroplc flow in terms of the
relative velocity is

v I _wxv w4l Vp= R+ 2 WXALF
where «*R is the centrifugal force and 21X, the Coriolis
force. For isentropic conditions, the substitution
1
> vp=Vh
may be made, so that the equation is then

2
v (it~ )= W XX W20+ F=WXIXV +F
(3)
The quantity

Fes h¢W w’-r’ | %

=it —aruter) @

is & measure of the total energy of the gas particles in the
relative system of coordinates and remains constant (as will

REPORT 1083—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

be shown for frictionless flow) for any particle; energy is
interchanged among the forms of enthalpy, kinetic energy,
and potential energy (— «®?*/2) resulting from the centrifugal
force field. In reference 2, E is shown to be constant for
any particle for frictionless flow and no heat transfer with a
finite. number of blades in the impeller.

In order to show that E is constant for any particle in
axially symmetric flow, the direction of the field force is first
identified. If the blades are considered to increase indefi-
nitely in number and to retain their camber-line shape, the
forces exerted by the blades are merely the pressure forces
exerted noymal fo the blade surfaces, which in the limit
approach uniformly distributed forces in the body of the
fluid. The relative flow lines are always contained in onc
of the family of blade surfaces, so that the field or blade
forces must be normel to the velocity. If the scalar product
of equation (3) is taken with the relative velocity, the result
is then

WVE=0

which indicates that E does not change along any flow line.
Elimingtion of blade force.—The blade force ean be
eliminated from the equation of motion if the equation for
the blade surfeces is assumed known. The force may then
be eveluated after the velocity components are known.
Under the condition of axial symmetry, the equation for
the family of blade surfaces

a(r, 8, 2)=constant

may be simplified. If the constant is changed, there is a
shift from one blade to another. Because of axial symmetry,
this shift is equivalent to rotating the originel blade by a
fixed angle. Therefore, the equation for the surfaces can be
put into the form

a=0-+f(r,2) ' (5)

Because the reletive velocity flow lines are contained in the
blade surfaces, TV is normel to Vo as well as to V. The
relation among the three vectors can therefore be shown
to be

W.:p_’;f VX Ve (8)

From the condition of axial symmetry,

oK
57 ==rj.VE=0

Because hoth VE and V¢ are normal to ; and T¥, they
must be parallel, and consequently E is known io be a
function of ¥ only (reference 4); that is,

E=E®) }

dE 0

VE=Vy r
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Insertion of equations (4), (6), and (7) into equation (3)
yields (without resolution of the term VX1

.cé_f W=<ﬁ w-vxv) V“_(;% Va-vX V) Vy+F

The blade pressure forces F are normal to the blades and
therefore parallel to Ve; this relation thus includes only two
nonparallel veetors Ve and V¥, so that the components must
separately satisfv the relations

F= —(:—4 V- vX V) Va=—(rj- WX¥XV)¥a (8)

and
L L Va-vXY ®)

Special conditions.—Two special conditions of technical
importance are considered: In high-speed machines, blades
with radial elements are desirable in order to eliminate bend-
ing loads resulting from centrifugal forces. Another fre-
quently occurring circumstance is that of zero vorticity
upstream of the impeller.

For blades with radial elements, the vector  lies in the blade
surface and therefore

1 -Va=f=0

Therefore f is a function of z alone. From equation (6),

0=W-va=’§+ of +wf. (10)
so that for radial blade elements
Y=—wr % (1_0 )

This relation provides considerable simplification of the equa-
tions developed later for solving the flow problem.

For vortex-free flow upstream of the impeller, equation (3)
is reduced for conditions there by setting Q=F=VX1V=0
and substituting V" for 1" to get

v(h+‘:)=o

or

ra

h—l—T; =constant

Also, zero vorticity gives, for axial symmetry,

0=VX V=i o (utor)+j 39—%)#3 (ur+wr®)

z ror
From the first and last terms and axial symmetry,

yr-+wri=constant

Then the value of the total energy E relative to the impeller is
72 2% ] T2
E=ht 1 T trutar)

which is constant upstream of the impeller. Then by equa-
tion (7), E remsins constant in the impeller,so that the equa-
tion of motion (9) becomes

Va-VX V=0 (11)
If the system of coordinates used is 7, 2, and o for expressing
equation (11), there results (reference 4)

2 (rV-vaxk)lf[% V- iXVoc):L'a

The subscripts indicate which variables are held constant.
This equation and the fact that the quantities in parentheses
are functions of » and z only establish the existence of 2 poten-
tial function of » and 2 only (®(r,2)) such that

% L V.vaxk
- Lor L«

(9% 17 ixVa

| 02 |1 a

o

| dal,. =0

The last relation indicates that with » and z constant, & is
constant; this is true regardless of the third independent
variable, which may be taken as 8. The three equations for
& are then put into vector form

Vo=1i(rV-VaXk}+k(rV-iXVa) 12)
The absolute velocity may then be_. shown to be
V=ve@t+rut+wr)Va (13)
and from
V. -Va=W-Vateri-Va=o

equation (13) gives for the moment of momentum g,

p=r{utor) =——G_CVV§;;VOL (14)
so that
V=V@+(3:(¥,Z)'TW) Va (132)

The potential ® can be used as an alternative to the siream

function in solving for the flow. Equation (13) indicates
that the projection of V& on the blade surface is equal to
the projection of the absolute velocity on the blade surface.
The equation for ¢ and that for & are obtained in the following
manner: The velocity V is eliminated from equation (9) by
means of equation (6) and there is obtained
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Va- vx(pLA v¢><va)+2wf,=__";4 Eé%

which is also applicable in the general case with nonzero
vorticity upstream of the impeller.

In order to obtain an equation for &, equation (13a) is
substituted into equation (2a)

= pArVoX V= pArv@X Vd-+ pAurvd X Va
Then
0=V X VY=V X [pArvEX (V&+ uVa)]

Although obtaining a solution in terms of ¢ is feasible
whether dEJdy is zero or not, when dE/dy=0, & may prove
more convenient. In regions where W?/a* is nearly 1.0,
because |W| is a double-valued function of the stream-
function derivative p| W], it will be uncertain whether the fow
is subsonic or supersonic. A solution obtained from a net-

work would requlre a very fine spacmg in regions where

IW|=a.
GENERAL EQUATIONS IN CYLINDRICAL COORDINATES

In general, where f,70 and dEfdy #0, the equations for the
internal flow are solved simultanecusly for the two velocity
components » and w, when u has been eliminated from the
equations by using equation (10). The equations are trans-
lated from their vector form to scalar notation by utilizing
cylindrical coordinates. Then a further transformation is

employed with characteristic quantltm as the mdependent

variables.

The continuity equation (1) is first written in vector form.
(the condition of axial symmetry being used) and multiplied
by rfpA

—v( W)_v WAW. V”+ W WAfr)=0

For isentropic flow,
Yo_Vh

e a®

Introduction of E by equation (4) and use of W-VE=0
produce

W-VIW%2 | &*rv E)A/r

v-W- a? + a? +A E)r

bA/r)_

This expression finally reduces to

(B G35
21+ g [0 252+ ¥ 0 ay

In cylindrical coordinates, equation (9) becomes

dE
ay

If equation (10) is now substituted into equations (15) and
(16}, there results for continuity

Wr— 0t frphe— fortr=p A4 - (16)

(1_ _I_ruwf) ‘+<__l,_ ﬂ r+(r_.1_"'___w-f_f_.ﬂ v+

az
(1= T4 o, 4 D @t 200 a0+
2.2
( +55 Ef)+z [vE(A/r)—l-wa—z(A/r):l———O an
and for the equation of motion

(1 +T?fz2)'wr+7"fzfr(”r—w¢)—(l +?"f,-2)0.+

ra| o G’)J{b 1Y ]-aul ¢-=o (18

USE OF CHARACTERISTIC YARIABLES

Statement of basic equations.—The method of reference 3
is applied to equations (17) and (18). The object is to find
two alternative equations with new variables £ and », instead
of z and r, such that each equation (corresponding to equa-
tions (17) and (18)) contains derivatives with respect to only
one of the independent variables. Two additional equations
are required to find the position coordinates z and 7 in terms
of the characteristic coordinates £ and 5. There are iwo
characteristic slopes dr/dz, ¢, and ¢, the first corresponding
to £ varying and 5 constant, the second to ¢ constant and »
varying. If ¢ represents either of these slopes and o repre-
sents either of the coordinates corresponding to the appro-
priate ¢, the results are

Tem={Z¢ (19)

k[ B e FEFBTT) | (20)

(the upper sign of & refers to §,, the lower, to {-) and

Jw,+Gv,+Lz,=0 (21)

where
B=1+r f,’—;u—:r?CVa)’

M2=§"£‘|;£:iw_’)

J E(ﬁl—i’“ﬁ-f—‘x—u LY

G =(M2—1)r*f, f.+—t%1:r2(Va)’i\f’_r’(v—a)’('ﬂ'lr— 0
LE—(rz:frfzg-'l'l +T’f,2)D1+
[Zous—u—(1-S+ "5 ) [
(15
Dl Er_? w2f21+ 2’w”frz -+ ”2]{")""

or O(4)r) | wr 3(—’1/")
_< ’)+A or + oz

Dy=r*f, [ arG’)-I-wS;({,") 2(u+wr)f.—pA

A 1a)
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Equation (20) for ¢ shows that the system is hyperbolic if
M>1.

In the homogeneous equations (D,=1,=0), the coefficients
L, and L_ (corresponding to {, and {.) are zero; conse-
quently, in the hodograph plane the slope of the characteris-

tics would be given by So=—2 In plane flow, J/G is s

function of » and w only, and this equation may be integrated
and the hodograph soluiions tebulated in advance of applica-
tion to any particular problem thet may arise. In the pres-
ent circumstances, however, J/@ also involves the position
coordinates, and D;#0, D;#0. A correspondingly easy
method of solution by simple waves is therefore unavailable.

£

z
Fiaure 1.—Characteristic and eylindrical coordinates.

Instead, the four (e=£ or ) equations (19) and (21) are inte-
grated simultaneously in a step-by-step procedure.

Method of computetion.—In figure 1, conditions are sup-
posedly known &t P, and P, and conditions are to be computed

at Ps. Then equation (19) in difference form is
rs—ri=(z—2){+ (22)
rs—Tre=(2—2){- (222)

This system may be solved for r; and 2. Then similarly for
equation (21}, the difference form is

Jlws—w) G (ts—t) + Ly (z—2) =0
J (ws—wy) + G- (ms—vg) + L(2%s—2) =0

The subscript ;. indicates that 4 is constant and the subscript
- indicates that £ is constant. In equations (22) end (23)
the coefficients ¢, f, &, L are averages between values for the
points P, and P;.  For the first approximation, only the values
at P; are known and these values are used.

When approximate velocity components and position coor-
dinates are thus determined for P, the coeficients ¢, J, G, L

(23)
(23a)
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may be computed there and averaged for a better approxima-
tion of the position coordinates and the velocity components
at P;. This process is repeated as often as necessary to
arrive at an answer of satisfactory accuracy. The smaller
the interval, the quicker the convergence to the solution.
In each stage of the process, if dE/dy#0, then ¥, must be
computed from

Ys— Kb=ﬁzs(‘x[’rf +¥)dz= j:_rs('x{’r + Hbz/;')dr

From the value of ¢, dE[dy at P; may be found.

& consfant
_____ 7] consfont

FiaurE 2.—Relation between shape of houndary and boundary conditions.

BOUNDARY CONDITIONS
GENERAL

The discussion in the previous section implies that boundary
conditions are known on & curve C containing points such as
P, and P., and that the solution is then extended into a region
containing points such as P;. The shape of the blades and
E () are assumed known in that region. On the curve C,
there are known in addition the values for w and z, from
which all other variables (such as dE/d¥, ¢, «, p, a®, and so
forth) may be computed. Suppose the initial curve is such
that the characteristic curves intersect it at two points, such
as A and D or A and E infigure 2. Then by equation (21),
there is & relation between the variables at A and D that does
not permit the independent specification of the variables
pand w at A and D. Similarly if two characteristics passing
through two boundary points reach a third boundary point,
then another degree of freedom is lost. In figure 2, if two
variables are prescribed on AB and EF, then one varisble may
be preseribed on BC and DE, and nonse on CD.

TIP CONDITIONS

The supersonic impeller has a high pressure ratio per stage
and a large air-handling cepacity per unit of frontal area.
In order to maintain the large capacity, the tip radius at
the entrance should be at least as large as at the exit. In
order to provide a maximum work output with a minimum
turning, the exit tip radius should be at least &s large as the
entrance tip radius. A reasonable shape for the tip stream-
line is therefore a surface of constant radius, although smaller
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radii between the entrance and the exit might be useful in
order to affect the internal flow.
lected, then, as it is also a streamline, the ratio ojw is
specified. Selection of the velocity or of a velocity compoment
remains. This selection may be made by consideration of
the blade-to-blade velocity variations and by using some
approximate method such as that outlined in the fo]lowmg
paragraphs.

In three-dimensional motion (ﬁmt,e number of blades),
Kelvin's theorem states that if the absolute velocity is irro-
tational upstream of the impeller, it will remain so inside the
impeller; that is, )

VX V' =VX W'+ 20k=0

where the prime indicates velocities of the nonsymmetric
flow. Then

VY-VX V=0
may be reduced to
’
2 (W D=r S+ 20T

where du/f0s is the arc-length partial derivative of w’
along the direction of §. This equation is now integrated
from the pressure surface of one blade to the suction surface

of the next in the direction r=constant, z=constant. The
variable ¢ increases by the amount 2rA/Nr, so that
(WD (W7 ,,=rj & 0+ f wio+ 2% A urgi

If it is now assumed that the values of du//0s and of %’
averaged across the channel are equal to the values obtained

A B C
) Ow‘f/ow-—'- '

Blades
inflow

iU ////

Cen rer line

\\\\‘0

Py

Blades
3 Z
Bf
4 (b)
(a) Conditions on B’B and BC unrelated.

(b) Conditlons on B’B related to those on BC,
FiaURE 3.~—Boundary conditigns for impeller.

If the casing shape is se- -

(24)

s -
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from the axisymmetric solution, and further that (117 -q),=
[, then

|H"[—|W = [E’“+( +2“’)!HT 2rd (24u)

if the relation
of|Wi=17

is utilized. In this equation all the velocity components
without subscripts are obtained from the axisymmetric

solution. If
[T 41177, =2] 1T

or some -other connection between |T¥7,], |H7,], |, and
the impeller geometry is assumed, the blade surface veloci-
ties at the casing may be obtained with that relation and
equation (24a). The distribution of |1T| at the casing may
therefore be selected on the basis of obtaining a desired
blade surface velocity distribution or distribution of u.

Suppose that, in some manner, all the variables have
been selected at the casing (curve BC in fig. 3(a)). The
flow is then uniquely determined in the region BP,C enclosed
by the casing and two characteristic lines. If the flow is
also prescribed at the leading-edge surface BB’, then the
flow is determined in the extended region B’BCPP,. When
the characteristic line BP; falls inside this region (fig. 3(a)),
no difficulty results. If, however, the characteristic B'P;
intersects the casing inside the blade region (fig. 3(b)}, then
the velocity may not be prescribed on the curve BP, (refer
to discussion of fig. 2), or alternatively, only one of the
velocity components may be prescribed on BB’ (BB’ is not
a streamline). Similar congiderations are valid on the curve
CC’ at the exit.

The selection of values for the variables # and w on the
entrance edge BB’ must be made by joining the solution
for the flow in the region ABB’A’ with that for the flow in
the blade region BCC’B’. Because the blades may deflect
the air at BB’ discontinuously and because the eflect of
thickness may be felt by the air in a discontinuous manner,
the discontinuities.in the flow should be evaluated. A
method for making this estimate follows:

The angle 8 is defined as the angle between the meridional
projection of the blade leading cdge and the z-axis (fig.
3(2)). The conditions outside the blade region are desig-
nated by subscript zero, those inside the blade region, by
no subscript. Then across the surface BB’ tho cquation
of continuity yields

po{We sin B— v €OS ﬂ)=(1 --2%:%) p(w sin B—v cos f) (25)

The discontinuity in blade thickness can cause no force
in the entrance surface BB’, and the blades can exert no
force in the blade surface. Therefore no force and no
discontinuity in momentum exist in the direction of the
curves representing the intersection of these two surfaces;
that is,
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(W—Wy-(% cos B—F sin B)XVa=0

or
r{u—ug) (f, sin B+ f+ cos 8)=(v— o) sin B+ (w—wo)cos B (26}

There is also available

u=—r(wf+vf;) (27)
1f the process is assumed isentropie, then
1 1
. h -ﬁ‘_ WQS_W ﬁ'
2-(n) =(+Tm0) @8)
is obtained by utilizing the fact that
2 2, 2 2 2.2
and that
To=r

There are then available equations (25), (26), (27), and
(28) for finding p, u, v, and w. The initial values of f, and f,
may be chosen from these equations to obtain desired rela-
tions between the velocity components outside and inside the
blade regions.

APPLICATIONS OF METHOD OF CHARACTERISTICS

In the examples computed in this section, the conditions
for which solutions are obtained vary. The purpose of these
solutions is to find the effect of some variations of preseribed
conditions on the resultant flow. For all the examples,
dE{d¢y=0; the flow is vortex-free upstream of the impeller;
at the leading and trailing edges the radial component » of the
velocity is zero; and the blades contain radial elements
(f=0). The relative Mach number at the conjunction of
the leading edge of the blade and the impeller casing is 1.94.
Except in example VI, the value of the blade angle with

respect to the axial direction is zero at the exit (f,=0). The
other conditions are summarized in the following table:
1 Entrance
i
' SWeep- Blade
Casing; Turning htck.
Esxample _ Blade | hick-
;r Pl;gon'ta %n.[ﬂ:é[ Tip :Eﬁa veloclty, rate (deg) ness
! (star)r | veloclty | SPeed (deg§
I 0 085@ | 1.68a; | —81.8 () 0to 0 0
! maximum
i to0
i Ir —0.3aur: [0.835 ey [Lita | —B44 [LHa O0to 45 0
i maxfmaom
i to0
| 1 ~0.3ar: |0.835a | Lidar | —64.4 |L.0da; | Twice 45 0
emmple
I
v ~0.3arre [0.8354a; | L4tar | —64. 2 ) T wice 45 4]
. example
! u g
v ~G3ar |0.835m | Lide | —844| () Twice 45 (9
example
; IT
VI ~0.3a;7: | 0.835q; | l.+4ar | —B4.4 @ 0ta 10 Q
. masimum
1

I- Dgt‘é%nilu?d by conditions at Ieading edge to zfr.=0.358; held constant at 2.1 a from
ZiTym Q
"‘Constant at 1.94 a to zfr,=0.25; decrepsed to L4 ¢ (=1.6 ;) at oxl

e Zero from z=0{ to z/r=0.25; from 2fre=0.25 to z/r;=0.5 the correctlon for blade thickmess is

Amr exp {"T [1'“5 i (54'25) ]}

4 Determined by leading edge ;initial valoe, 1.94 a.
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Example I—The results of the computation for the first
example are summarized in figure 4 (a), which shows stream-
Iines, contours of constant Mach number and constant energy
level, and some of the characteristics of the &family, which
intersect the leading edge. Because of the intersection of
the characteristies from the leading edge with the tips of
the blades, there is no control over the Mach number, as the
blade shape was preseribed by

The Mach number at the casing rises to a maximum of 2.1 at
zfr,=0.356, and is then assigned a constant value. By equa-
tion (4), the stagnation enthalpy H (=h4V?2), which
measures the energy of the ges, increases with z at the rate

oH_
dz 3z

At the casing v=0, and therefore, from equation (10a) and
W=+,

rw® d*f

lWi< UW L= 722

This expression shows that the rate of work input is increased
by increasing the rate of bilade turning and decreesed by
increasing T¥". Figure 4 indicates that the rate of turning of
the blade is too small in the beginning of the impeller and
that as a consequence nearly all the work input is concen-
trated in the back portion of the impeller. This condition
is aggravated by the acceleration of the gas in the initial
portion (u[1¥},<<0 because u#<{0). Increasing the turning
rate, however, will open the flow area and cause |11} to
inecrease unless the area is controlled by blade thickness.

A great disparity of work exists between the root and the
tip; the values for AH/a,? are 0.65 and 2.5 at the exit. For
isentropic comipression, the corresponding ratios of outlet to
inlet stagnation pressures are 2.48 and 9.0 for the root and
the tip, respectively. The Mach number at the root at the
exit (z=r,, r=0.507 r;) is in the neighborhood of 2.25, and
a maximum value of about 2.5 is reached at z=r,, r=0.70 r..
Subsonic Mach numbers sare reached in the region
0<z/r;<0.3. The solution could not be extended into this
region.

If the velocity were caused to decrease et the exit (z=r;)
by decreasing the velocity at the casing (r=r;) in the rear
part of the impeller (0.356<z/r,<{1.0}, the mass-flow density
at the exit would increase with the decrease in velocity and
the required flow area would decrease. Termination of the
hub would be expected, not at »=0.507 r,, but at some larger
value where the work output would be higher. Another
method of reducing the blade height at the exit and thereby
reducing the work veriation there would consist in relaxing
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AH/jo 2
1.0 - . . 4 2.0\0 22\5

r/r,

0 7 2 7 4 5 —F 7 8 9 .0
z/r,
(a} Example I,
FiGURE 4.—Flow characteristics.

]
O

(b) Example IL.
Fioure 4.—Continued. Flow characteristics.
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zfr,

(c) Example ITT.
FIGCRE 4—Continued. Flow characteristics.

the condition of ¥=0 and utilizing some other relations that
would correspond to lower Mach numbers. Two variables
or relations could also be prescribed at the exit, but conditions
on the blade tip (r=r;) could not be specified for some region
near the back of the impeller. In this respect the entrance
and exit conditions would be similar.

Example II: Prerotation of gas.—In order to masaintain
supersonic flows throughout the impellers so that the flow
could be computed, the relative entrance Mach number at
the blade root for example II was increased by assuming an
initial counterrotation. The rotative speed had to be reduced
from 1.68 @, to 1.44 @; to maintain the work output, the
relative Mach number at the leading-edge tip, approximately
the same blade angle there, and the same axial velocity com-
ponent at the inlet. This reduction had & further beneficial
result of reducing the absolute Mach number at the exit for
& given relative velocity axially directed. The condition of
z=constant for the leading edge cannot be maintained for
shockless entry with radial blade elements and a counter-
rotating free vortex entering the blade system. The sweep
angle § chosen for this example was 45°, enough to permit
free selection of W=1.94 a over the entire blade tip, because

the characteristic curves from the leading edge do not inter-
fere with boundary conditions on the casing. The reduction
in velocity at the casing reduces the blade height at the exit
and the work-output variation there.

In order to examine deviations from an example more
nearly representative of a good design, the velocity af the
blade tip for example IT was not maintained the same as in
example I, and consequently the differences between examples
I and IT are not ascribable solely to inlet prerotation. Com-
parison of the effect on rotative speed (for the same turning
at the tip and the same work output) and on diffusion at the
blade roots is, however, valid.

The results of the computations are shown in figure 4 (b).
In this example, the turning rate is predetermined in the
region —0.5<z{r,<0 by the velocity distribution upstream
of the leading edge, the condition of radial blade elements,
and the slope of the leading edge. The turning rate is con-
tinuous at z= 0, and satisfies the squation

%(%‘zg)=3.008—2.298(32—1)2 0<2/r<1/3)

=3.008[1—1/4(3z—1)] (1/3<2fr.<1)
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Compared with the first example, the work-input rate at the
- blade tip is greater in the initial section; however, the worlk
distribution is still unsatisfactory. The exit blade height is
also much less, with the result that the work input is much
more nearly equalized; at the root the value of AH/a? is 1.8,
whereas at the tip the value is 2.5. These values correspond
to stagnation pressure ratios of 5.2 at the root and 8.35 at the
tip. This variation could be reduced by sweeping back the
trailing edge to provide space for additional work input at
the hub streamline. This sweepback is more feasible with
the smaller blade height and work variation of the second
example than for the first example.

Example II: Effect of turning rate.—In order to reduce the
size of the impeller by increasing the turning rate, example
III was computed with twice the blade turning rate of exam-
ple II for 2>>0 and with the same over-all work output. One
result is the greater diffusion on the hub, where a minimum
Mach number of 1.2 is reached instead of 1.4 as in the pre-
vious example (see fig. 4 (c)). The increased diffusion
probably results from the increase in hub curvature, which
in turn is caused by the shorter axial distances required for
the changes. Another result is the incressed height of the

L0

r/rn
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blade at the exit, and an increase in the exit Mach number
from 2.3 to 2.7. The increased streamline curvature also

- accounts for the higher exit veloeity and this higher velocity

in turn explains the larger blade height. The characteristic
line through the casing at the exit (r=r, 2=0.5 r;) intersecls
the hub at 2=0.155 r,. The characteristics through the re-
maining portion of the hub (22>0.155 r,} are affected by con-
ditions at the exit (2=0.5 r,) where the velocities increase
with decreasing radius. The result is a large increase in

velocity at the blade hub in the region 2>>0.155 7.

Example IV: Effect of diffusion at casing.—In the next
example, all conditions remained the same as in the third
example except that the prescribed velocity at the casing was
varied smoothly from the value of 1.94 a at 2=0.25 r, to
1.40 ¢ at 2=0.5 r,. The desired reduction has been obtained

- in blade height and work-output variation, but the discharge

velocity has a large value of 2.6 a (fig. 4(d)). It may there-
fore be concluded that the alternative of directly prescribing
a condition with low relative velocities at the exit would have
been more effective than prescribing conditions at the blade
tip for reducing the blade height at the exit.

AH/a™*
5 /

g5z

(d}

4 [ ] ] | 1 1 1 1 ] . 1 L ] 1 1 I I ) L. 1
-5 -4 =3 v ~/ a N4 2 3 4 5
z/r:

(d) Example IV,

FiguRE 4—Continued, Flow characteristies.
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A new ph:zx~menon has 2lso arisen in that the character-
istics passing through 2z=0.5r,, r=0.92r, end 2z=0.5r,
r=0.893r; intersect at 2z=0.397r, r=0.832r,, At this
point, the Mach number changes discontinuously from 2.13
to 2.43 and the streamline inclination to the axis changes
from 14.9° to 7.4°. This single point.does not represent the
full extent of this difficulty. Actually, there is a region
bounded by & curve in which two solutions are obtained;
each solution is determined by & different region of the
boundary. Consequently, the boundary conditions are
incompatible with obtaining a single-valued continuous
solution. This situation is enalogous to the Prandti-Meyer
flow, where the characteristics intersect at the corner. If a
computation were started for a simple two-dimensional
supersonic flow from a streamline shape and from the velocity
distributed thereon, which were exactly the same as on one of
the streamlines of a2 Prandtl-Meyer flow around a corner,
then, when the solution was extended toward the corner, the
characteristics would intersect at the corner in the manner
of figure 4 (d). 'The intersection on figure 4 (d) can be taken
to represent a physical boundary to the fluid in that the
streamline passing through that point would be taken for
the hub shape. Only 90 percent of the flow (¥=0.9) could
be accommodated in the impeller of example IV if continuous
flow with the imposed boundary conditions were required.
An obvious method of increasing the flow is to increase the
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increase could be accomplished by decreasing the relative
velocities there and discarding the condition #=0 to obtain
& shorter blade height.

Exemple V: Increasing blade thickness.—In none of the
examples computed so far was blade thickness considered.
An obvious effect of increasing blade thickness is to decrease
the velocity in a region where there is no independent con-
trol of the velocity (such as the region 2<{0.35r, in example I,
fig. 4 (a})). This phenomenon provides the degree of freedom
required in such regions to control the relative velocity |77
as well as the surface velocities [T} and {W7,[. In regions
where the velocity [177| at the blade tips is under control (the
entire tip sections for examples IT, IIT, IV), altogether dif-
ferent effects may be expected. The effect of thickness
under these ecircumstances was investigated by computing
another example with a cosine-like bump in the blade thick~
ness starting at 2=0.25r,. (See the previously presented
table of boundary conditions.) The maximum thickness
was reached at 2=0.375r;. At r=r, the thickness is 20
percent of the blade spacing, and at the hub the velue is 25
percent. The results of the computation are shown in figure
4 (e). The effect of the bump is not felt upstream of the
characteristic with positive slope passing through z=0.25r,,
r=r,. The most obvious effect is a decrease of flow Mach
number in the region of increasing thickness (and inward
from the casing, where the velocity is not preassigned), as

slope of the characteristiclines at the exit for r<{0.9r,. This | might be expected from one-dimensional theory. At z=

L0r -  ___/Moch numbes !\/.6 A

= # i /'6: =
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8"' ’/ \ : I3
& = *
T F £ S \ \
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— ’
. — /
& / 1.
6 /'/ ’/
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[0 i I | 1 i 1 i ] | ] 1 1 1 [l 1 L J 1 I
=5 -4 =3 =2 =/ a i 2 .3 4 G
z/r;
(a) Example V.

FI1GGRE 4.—Continued. Flovwr characteristics.
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0.25r, and 2=0.375r,, the change inblade height is about 10 per-
cent as compared with example IV. Another effect of

thickness is to be seen in the waviness of the hub streamline

in the region 0.15<2fr,<0.25 where the thickness has not
yeot started to increase. This bump may be traced in other
strearolines along the characteristic running through the
point of maximum thickness at the casing (r=r,, 2=0.375r,).
The effect of the bump on the hub is therefore to increase the
local velocity by curvature in order to hold .the required
velocity at the casing; this action from hub to casing takes
place along the characteristic line as simple waves in two
dimensions, and the velocity is scen to have increased all
along this characteristic line. . The intersection of the char-
acteristics and the double-valued solution occur near the
exit over a considerably larger portion of the flow than in
the previous example. In this example also, if a lower ve-
locity were prescribed at the exit, a unique solution would

REPORT 1083—NATIONAL ADVISORY COMMITTEE FOR AERONATUTICS

be obtained. It would also be feasible to carry out this

idea and at the same time to prescribe another condition

(such as »=D0) provided that one were willing to lose control

of the condition at the back portion of the casing (r=r,) in
a manner analogous to that used at the front portion in

example I.

Example VI: Effect of leading-edge sweep.—It is of more
technical interest, however, to carry out this scheme at the
entrance, for then the leading-edge sweep may be reduced
from 50 percent of the axial depth of the machine to consider-
ably less; A computation of the inlet flow conditions for
such an impeller is shown in figure 4 (f}, where the conditions
at the leading edge are the same as for example 11I. The
blade shape is different, with the second derivative of angle
d*f/dz?=—d?(z)/d2* constant. Also, the velocity at r==1.0
cannot be prescribed. Only in the region enclosed by the
casing and leading-edge characteristics was the computation

AHla "t _
1.0 -.[;2 —.:?2 f? { 15 /TO 20
. 1\ \ I \ 1 \ I { \ 1
Leading J b Lo . . 1 1Y \\
e |y N\ N
- ] ,I ' } II I\ \ll i \ \
t Y i\ \ ! > !
| v fI I\ ! \ l‘ \\ \‘
9 I’ \‘ f/ Il \ ,' 1‘ \\ \‘ \\ \
;’l \ ," / \ ’,’ ¢ \‘ -\ ‘\Mach number % g
/ .
l[ \ ! f, \ 1 \ ‘\ . “
. h f f Y ‘ Ay ‘
P (W / \ \
\ I i) &N \ 26
o N7 \ /
g i / / \ / v/
foAg 24
! VY
> l“ /I (X /‘
&L i Iy /
N .III / \. : ¢ |22
! / 2
] ! 7 l
A i g .
i 77
,,' S/ / |
/! /[ 2o
-~ 1 ’,I
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—_—— M
b / _____ gH/aui?
- 18, - o - -
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() Example VI.
F1GURE 4—Concluded. Flow characteristics.
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completed. The result (fig. 4 (f)) shows a large increase in
Mach number, especially at the blade tip. Because of this
increase, the blade turning accomplishes no work in the
beginning of the impeller, but shows a region of energy
abstraction from the air; the initisl negative rotational com-
ponent becomes more negative as the air turns axially and
the velocity increases as in example I. The situation is
quite different in the back portion where the blade angles
approach zero and the tangential component does likewise;
all the work input is concentrated in the back portion of this
impeller as in the other examples. . Postponement of work
input to the back portion of the impeller is to be expected in
any case where the velocity is increasing as the blades turn
toward the axial direction, or where the velocity is decreasing
as the blades turn past the axial direction. Imternal flow
and work distribution could be considerably improved in
this example by increasing blade thickness in the region of
large velocity increase.

CONCLUSIONS

General equations developed for isentropic, axisymmetric
flows in rotating impellers with any given blade shapes
showed that the blade-force term can be eliminated and
solved for, if desired, after the flow solution is completed.
Further, if the flow upstream of the impeller is vortex-free,
then a potential funection of only radial and axial distances
exists, which may be used to find the projection of the
absolute velocity on the blade surface.

For supersonic flow, the method of characteristics was
used to compute the flow for several examples with radial
blade elements and vortex-free inflow. These examples
show that

(1) With zero radial inflow, the influence of the leading
edge and the blade turning on the casing velocify in regions
where this velocity cannot be prescribed in advance causes
an increase in velocity and & reduection of blade loading and
work input in the initial portion of the compressor. These
effects can be compensated for to some extent by increasing
blade thickness.

(2) Sufficient leading-edge sweepback adds a degree of
freedom to the boundary conditions at the blade tips and

therefore permits a more constant or a decreasing velocity
inside the impeller.

(3} Reduction in the exit veloeity results in 2 shorter blade
height and & more uniform distribution of work input &t the
exit.

(4) Increase in the rate of turning causes more rapid hub
curvatures and consequently larger internal velocity gra-
dients. Diffusion on the hub is therefore greater in the
initiel part of the impeller, and a lower velocity minimum is
reached there, whereas the gas velocity at the hub near the
exit reaches larger values. This situation requires larger
blade heights at the exit with a larger exit velocity at the
root and greater variation of work output from root to tip.
Diffusion of the gas velocity at the tip will moderate this
effect, as will also a relaxation of the condition of zero radial
velocity at the exit and the substitution of a condition giving
lower exit velocities.

(5} Not every set of boundary conditions results in a
continuous, single-valued solution in the region of interest.
In the examples considered, a relaxation of the condition of
zero radial velocity at the exit would have permitted another
condition giving lower velocities there. This condition
would have eliminated the region of the double-valued
solution and given a shorter blade and a more nearly
equelized work output.

(6) The effect of variations in blade thickness in regions
where velocity is also prescribed et the blade tip is to change
the velocity as in one-dimensional flow but not by the same
amount, for there is some compensafion by variations in
blade height. The preseribed velocity and thickness require
hub curvatures that cause veloecity changes to be projected
like simple waves on characteristic curves. It is therefore

- possible to find regions of increased velocity when the blade

thickness is increased.

Lewis Frieer PropursioXN LaBORATORY,
NaTIONAL ADvisory COMMITTEE FOR AERONAUTICS,
CLeveLAND, Omo, January 24, 1951.

APPENDIX
SYMBOLS

The following symbols are used in this report:
A r—Ni2x

a sonic velocity of gas

a, sonic velocity of gas at conjunction of leading edge
and impeller case

a* critical speed of gas upstream of impeller

B an abbreviation (see equations (21a))

abbreviations (see equations (21a})

D\,D,

E sum of stagnation enthalpy and potential energy
of gas (specific) in moving coordinates

(- 5-%)

F distributed blade force per unit mass of fluid (a
vector)
part of blade surface function dependent on r and 2
only (a=0-1f(r,2))
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ka,l.‘

bl

‘number of blades
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an abbreviation (see equations (21a))

absolute stagnation enthalpy (A V?/2)

work input- to gas (rise in absolute stagnation
enthalpy)

static enthalpy of gas (specific)

unit vector parallel to curve. 6=constant, z=
constant (1=Vr) )

an abbreviation (see equations (214)) N

unit vector parallel to curve z=constant, r=econstant
(j=rv8)

unit vector parallel to curve r=constant, f=
constant, (k=Vz)

an abbreviation (see equations (21a))

%)

loeal relative Mach number (

static pressure of gas

unit vector parallel to W’

vector of r -

normel distance from axis of rotatipn

distance from axis of rotation to blade tip at leading
edge

arc-length element parallel to W™ ,

blade thickness measured in directjon of rotation

rotational component of relative ggs velocity

absolute gas velocity (a vector) [fv-7 (u+wr)t-kw]

radial component of gas velocity

relative gas velocity (a vector) (iv-+ju-t-kw)

w axial component of gas velocity

P distance measured parallel to axis of rotation

o function for blade surface (a (r, 8, 2)=constant)

B angle between meridional projection of leading edge
and axis of rotation '

¥ ratio of specific heats

t either ¢4 or {_ in general form of equations

g slope of curve for ¢ variable, y constant

[ slope of curve for 4 variable, § constaut

7 one of characteristic coordinates for gas flow in
impeller

] meridional angle (for cylindrical coordinates) .

u absolute moment of momentum (r (- wr))

£ one of characteristic coordinates for gas flow in . |
impeller

o gas density

¢ either 7 or £ in general form of equations

il velocity-potential function of » and z only that exists
for initially irrotational absolute motion

¥ stream function (V¢=pAjX V)

Q vector form of w

w angular velocity of impeller

Subscripts:

0 upstream of impeller

P pressure surface of blade at tip

$ suction surface of blade at tip

Subacripts r, 8, 2, o, £ % indicate partial differentiation.

REFERENCES

1. Reissner, Hans: Blade Systems of Circular Arrangement in Steady,

Compressible Flow. Studies and Essays. R. Courant Anni-
versary Volume, Inteérscience Pub. Ine. (New York), 1948, pp.
307-327. -

2. Wu,
Fluid Flow with Subsonic or Supersonic Velocity inTurboma-

Chung-Hua: A  General Through;FIow Théorj of

chines of Arbitrary Hub and Casing Shapes. NACA TN 2302,

1951, _

3. Courant, R., and Friedrichs, K. O.: Supersonic Flow and Shock

Waves, Interscience Pub. Inec., 1948.
4. Brand, Louis: Veotor and Tensor Analysis.
Ine., 1948, pp. 190, 194,

John Wiley & Sons,



